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Adiabatic motion of a quantum particle in a
two-dimensional magnetic field
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Viale delle Scienze, 43100 Parma, Italy

Received 1 September 1995

Abstract. The adiabatic motion of a charged, spinning, quantum particle in a two-dimensional
(i.e. of constant direction) magnetic field is studied. A suitable set of operators generalizing the
kinematical momenta and the guiding centre operators of a particle moving in a homogeneous
magnetic field is constructed. This allows us to separate the two degrees of freedom of the system
into afast and aslow one which are, in the classical limit, the rapid rotation of the particle around
the guiding centre and the slow guiding centre drift. In terms of these operators the Hamiltonian
of the system can be rewritten as a power series in the magnetic lengthlB = √

h̄c/eB, and
the fast and slow dynamics separates. The effective guiding centre Hamiltonian is obtained to
second order in the adiabatic parameterlB and reproduces correctly the classical limit.

1. Introduction

The study of the adiabatic motion of charged particles in slowly-varying magnetic fields
is a very well developed subject of classical mechanics [1]. It is of utmost importance
in plasma physics, in the study of particle motion in the geomagnetic field as well as
in astrophysics. For these reasons several efforts have been devoted over the years to
gaining a deeper understanding of the formal structure underlying the problem. In this
manner the original method of directly subjecting the equations of motion to a standard
perturbative treatment [1] has been supported by the works of Gardner [2], Mynich [3]
and Littlejohn [4–6] developing Hamiltonian theory and yielding a systematic procedure
allowing the construction of adiabatic invariants. While Gardner and Mynich based their
approach on field line coordinates and canonical transformations, Littlejohn proceeded by
investigating the Hamiltonian structure of the system and by phase space (symplectic)
geometrical techniques. In this paper we deal with the problem of the adiabatic motion
of a charged, spinning, quantum particle in a slowly-varying magnetic field. For this task
we develop an algebraic technique which very much reminds us of the one used by Littlejohn
in classical mechanics. Nevertheless we make use of a different set of variables and do
not make explicit use of symplectic geometry. We restrict our attention to particles moving
in a plane under the influence of a time-independent perpendicular magnetic field. This is
not only an expedient in order to illustrate our technique in a simple case. Although the
planarity constraint may seem to be artificial in the classical context it is not in the quantum-
mechanical context. Devices producing the confinement of electrons on a plane are in fact
widely studied in physics, as, for example, in the quantum Hall effect [7]. When these
systems interact with arbitrary inhomogeneous magnetic fields a realistic analysis indicates
the effective dynamics to be described by a Hamiltonian proportional to the two-dimensional
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Laplace operator in minimal coupling with an effective magnetic field represented by the
normal component of the original magnetic field [8]. This is the kind of system which
we are going to deal with. Our perturbative analysis is shown to be consistent with some
general results concerning the ground state of quantum particles moving in arbitrary two-
dimensional magnetic fields [9, 10].

Before facing the quantum problem it is better to briefly recall the main features of the
classical one. We start therefore by considering a classical particle of massm and chargee
moving in a plane under the influence of a normal uniform magnetic field of magnitudeB.
Let x = (x1, x2) denote the position of the particle andv = (v1, v2) its velocity. As is well
known the particle follows a circular orbit of radiusrB = (mc/eB)|v| whose centre remains
motionless. The frequency of the motion is the cyclotron frequencyωB = eB/mc. The
centre of the orbit is called theguiding centreand its coordinatesX = (X1, X2) are related
to the position and the velocity of the particle by the relationXi = xi + (mc/eB)εikvk†.
Holding the energy of the particle fixed, the stronger the magnetic field the smaller is
the radius of the orbit and the faster the particle. By increasing the magnitudeB of the
magnetic field, the classical particle explores a portion of the plane which becomes smaller
and smaller. This gives a reason why, in classical mechanics, the motion in a very strong
magnetic field may be studied along the same lines as that in a weakly inhomogeneous
field. This fact is not immediate in quantum mechanics, since even in a uniform magnetic
field the wavefunctions which are commonly used in the discussion of the problem do not
localize in the neighbourhood of a point by increasing the magnetic field‡.

Figure 1. Adiabatic motion of a charged particle in a two-dimensional magnetic field.

Let us now consider the case of a weakly inhomogeneous magnetic field of
magnitudeB(x). What happens is that the particle keeps on rapidly rotating around the
guiding centreX but, this time, the guiding centre no longer remains motionless. It begins
to slowly drift in the plane. The cyclotron frequency becomes, in addition, a function of
the positionωB(x) ' eB(X)/mc. We can therefore distinguish two types of motion of the
system: the veryfast rotation around the guiding centre and theslow drift of the guiding
centre in the plane. From the point of view of Hamiltonian theory it is not obvious to
understand how to deal with this situation. The systematic procedure for finding a proper
set of canonical variables for the system has been given by Gardner [2] whereas Littlejohn

† εij = εij denotes the completely antisymmetric tensor in two dimensions:ε11 = ε22 = 0, ε12 = −ε21 = 1.
Everywhere in this paper the sum over repeated indices is understood.
‡ Because of the infinite degeneracy of every Landau level, the energy eigenfunctions depend obviously on which
variable we diagonalize along with the energy. It is customary to discuss the problem in theLandau gaugeor in
the symmetric gaugewhich lead, respectively, to the diagonalization ofX1 (X2) and of the angular momentum
of the particleL. In both cases the probability distributions of the particle position do not resemble the classical
trajectories (in the ground state, for example, a point).
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[4] has shown how to construct these variables as power series in an appropriate adiabatic
parameter†. The rotational motion of the particle may then be separated from that of the
guiding centre and the guiding centre motion described as the phase space motion of the
remaining couple of canonical variables.

We now come to quantum mechanics. The first thing that strikes us is that Planck’s
constant ¯h introduces a length scale into the problem: themagnetic length

lB =
√

h̄c

eB
. (1)

Quantum mechanics provides, therefore, a universal means to evaluate the order of
magnitude of the variation of a magnetic field: the comparison between the length scale
over which the field varies and the magnetic length. For a rather weak 1 G magnetic field,
e is the electron charge,lB is already a very small length,lB ' 10−4 cm. The magnetic
length lB appears therefore as a natural adiabatic parameter of the theory, that, in contrast
to the classical case, does not have to be introduced by hand.

In this paper we construct a suitable set of operators allowing us to rewrite the
Hamiltonian describing the motion of a particle in a two-dimensional magnetic field as
a formal power series in the magnetic lengthlB . With the expansion parameter having the
dimension of length, the perturbative series makes sense only when thenth derivative of
the field multiplied bylBn is a very small number in every point of the plane.

In section 2 we give an outlook on the anomalous Hamiltonian structure of a particle
interacting with a uniform magnetic field. The construction of a set of operators adapting to
this simple problem indicates clearly the presence of afast and aslow degree of freedom
of the system. It also suggests the way to be followed in the general case. In section 3 we
construct a new set of variables{5i, X

i; i = 1, 2} which we adapt to the inhomogeneous
problem. In the semiclassical picture the5is describe the rapid rotation of the particle,
whereas theXis take care of the dynamics of the guiding centre. The construction is
carried out order by order in the perturbative parameterlB up to second order. In section 4
the kinematical momentaπi and the coordinatesxi , i = 1, 2, of the particle are rewritten in
terms of the new variables. This allows us to write down the Hamiltonian of the system as
a power series in the magnetic lengthlB . An appropriate unitary transformation is finally
used in section 5 in order to make the perturbative expansion depend on the variable51

and52 only by means of their combinationJ = 1
2(52

1 + 52
2). The fast rotational motion

of the particle may therefore be separated from theslow drift of the guiding centre. In
the classical limit our result reproduces correctly Littlejohn’s Hamiltonian [4]. Section 6
contains our conclusions.

2. An outlook on the canonical structure

Magnetic interactions appear as modifications of the canonical structure of dynamical
systems. This feature plays a central role in the Hamiltonian, and hence quantum, description
of the adiabatic motion of charged particles in strong magnetic fields. We begin, therefore,
by briefly reviewing this aspect of the problem in the case of a homogeneous magnetic
field, introducing at the same time conventions and notations that we shall use in the rest
of the paper.

Let us consider a spin-1/2 particle of massm, chargee and gyromagnetic factorg
constrained to move in thex1–x2 plane in the presence of the homogeneous magnetic field

† In his work Littlejohn made use of a set of non-canonical variables. This may however be reconfigured to a
canonical one by means of an appropriate transformation.
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B(x) = Bẑ. Denoting byai(x), i = 1, 2, an arbitrary choice of vector potential for the
dimensionless fieldB(x)/B, ∂iaj − ∂jai = εij , the dynamics of the particle is described by
the Pauli Hamiltonian

H = 1

2m

∑
i=1,2

(
−ih̄

∂

∂xi
− eB

c
ai(x)

)2

+ g
h̄eB

mc
σ3. (2)

It is customary to parametrize the system by means of the canonical variablespi = −ih̄∂/∂xi

and xi , i = 1, 2. Nevertheless, Hamiltonian (2) takes an extremely simple form if
we replace thecanonical momentapi by the gauge covariantkinematical momentaπi ,
πi = pi − (eB/c)ai(x). Apart from a scale factor,π1 and π2 behave as conjugate
coordinates and the Hamiltonian (2) can be rewritten as that of an harmonic oscillator,
allowing the immediate solution of the problem. In order to get an adequate set of canonical
variables for the description of the system, it is therefore more convenient to keep the
kinematical momentaπi and to replace the coordinatesxi by the guiding centreoperators
Xi , Xi = xi + (c/eB)εijπj . In the classical limit theXis represent the coordinates of the
centre of the classical orbit. The set of operators{πi, X

i; i = 1, 2} fulfils the commutation
relations

[πi, πj ] = i
h̄eB

c
εij [πi, X

j ] = 0 [Xi, Xj ] = −i
h̄c

eB
εij (3)

so that, up to some scale factors,πi and Xi may be recognized as canonical variables.
We note that the kinematical momentumπ1 and the guiding centre coordinatesX2 behave
now as ‘canonical coordinates’ whereas the kinematical momentumπ2 and the guiding
centre coordinateX1 correspond to the respective ‘canonical momenta’. The presence of a
homogeneous magnetic field produces a kind of rotation of the canonical structure, mixing
up canonical momenta and coordinates in new canonical variables.

An outlook on the canonical commutation relations (3) allows us to single out a second,
very important, peculiarity of the variablesπi andXi . Thinking of Heisenberg’s equations
of motion we immediately realize that the temporal variation of theπis is proportional to
B, π̇i = i[H, πi ]/h̄ ' B, whereas that of theXis goes as 1/B, Ẋi = i[H, Xi ]/h̄ ' 1/B†.
In the limit of very strong magnetic fields, the canonical structure of the system is distorted
from the magnetic scaleB and theπis andXis behave naturally as describing afast and a
slow degree of freedom of the system, respectively.

In the next section we construct a set of operators generalizing theπis and theXis
for an arbitrary inhomogeneous magnetic fieldB(x) = Bb(x)ẑ (the dimension of the field
being reabsorbed in the magnetic scaleB). This allows us to set up an adiabatic description
of the motion of a quantum particle in a two-dimensional magnetic field in a quite simple
way.

For the sake of clarity it is convenient to introduce dimensionless quantities by
factorizing the energy scale ¯hωB , ωB = eB/mc, from the Hamiltonian. Recalling that
the magnetic lengthlB = √

h̄c/eB, we redefine the kinematical momenta as

πi = −ilB
∂

∂xi
− 1

lB
ai(x). (4)

Hamiltonian (2) can then be written simply asH = h̄ωB( 1
2

∑
π2

i − gσ3). It is instead
necessary to keep guiding centre operators with the dimension of length,

Xi = xi + lBεijπj (5)

† Hamiltonian (2), of course, does not depend on theXis. We nevertheless act as if it does in order to explore
the behaviour of the canonical variables in the limit of a strong magnetic field.
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in order to preserve the scale dependence of the canonical commutation relations (3)

[πi, πj ] = iεij [πi, X
j ] = 0 [Xi, Xj ] = −ilB

2εij . (6)

A general inhomogeneous magnetic fieldB(x) depends on coordinates with the dimension
of length, after all.

3. Looking for a suitable set of variables

We now consider a spin-1/2 particle of massm, chargee and gyromagnetic factorg
constrained to move on thex1–x2 plane under the action of the inhomogeneous magnetic
field B(x) = Bb(x)ẑ. b(x) is supposed to be an arbitrary positive nevervanishing smooth
function ofx. Introducing an arbitrary choice of vector potentialai(x) for the dimensionless
field b(x)ẑ, ∂iaj − ∂jai = εij b(x), the system is again described by the Pauli Hamiltonian

H = h̄ωB

(
1
2

∑
i=1,2

π2
i + gσ3b(x)

)
(7)

where the kinematical momentaπi = −ilB∂i − ai(x)/lB have already been introduced in
place of the canonical momentapi . In spite of the very simple dependence of Hamiltonian
(7) on theπis, the kinematical momenta are no longer conjugate variables and cannot be
directly used to give a simple solution to the problem. The set of operators{πi, x

i; i = 1, 2}
fulfils in fact the commutation relations

[πi, πj ] = iεij b(x) [πi, x
j ] = −ilBδ

j

i [xi, xj ] = 0. (8)

Nevertheless, we can try to construct a set of variables generalizing the kinematical
momenta (4) and the guiding centre operators (5) to the case of an inhomogeneous magnetic
field as power series in the magnetic lengthlB with coefficients depending on theπis and
thexis. We proceed order by order in the parameterlB by constructing, say at thenth order,
a set of operators{5(n)

i , Xi
(n); i = 1, 2} fulfilling adequate conditions. We require that:

• in the limit of a constant magnetic field,b(x) → 1, the5
(n)
i s and theXi

(n)s should
reduce to the kinematical momenta (4) and to the guiding centre operators (5), respectively;

• the 5
(n)
i s should be conjugate variables up to terms of orderlB

n; and
• the Xi

(n)s should commutate with the5(n)
i s up to terms of orderlBn.

These commutation relations obviously generalize equation (6). We nevertheless do not
insist that theXi

(n)s be conjugate variables [4].

3.1. Zero-order variables

In order to fulfil the conditions above up to terms of orderlB we simply rescale the
kinematical momentaπi by a factorb−1/2,

5
(0)
i = 1

2{b−1/2, πi} (9)

where the functionb−1/2 should be evaluated inX(0) ≡ x. The anticommutator{ , } is
introduced in order to make the5(0)

i s Hermitian. A brief computation gives the commutation
relation fulfilled by the set of operators{5(0)

i , Xi
(0); i = 1, 2},

[5(0)
i , 5

(0)
j ] = iεij + iεij

lB

4
εkl

{
(∂kb)

b3/2
, 5

(0)
l

}
[5(0)

i , X
j

(0)] = −ilBδ
j

i b
−1/2

[Xi
(0), X

j

(0)] = 0 (10)



2204 P Maraner

where all the functions have to be evaluated inX(0). As required, the5(0)
i s are conjugate

variables up to terms of orderlB and the commutators between the5
(0)
i s and theXi

(0)s are
again of orderlB .

3.2. First-order variables

We proceed by constructing a couple of operatorsXi
(1), i = 1, 2, commuting with the5(0)

i s
up to terms of orderlB2. The goal is achieved by performing a transformation generalizing
(5) to the case of an inhomogeneous magnetic field.Xi

(1) is defined as

Xi
(1) = xi + lB

2
εik{b−1/2, 5

(0)
k } (11)

the function b−1/2 being evaluated inX(0). We have, therefore, the following set of
commutation relations:

[5(0)
i , 5

(0)
j ] = iεij + iεij

lB

4
εkm

{
(∂kb)

b3/2
, 5(0)

m

}
+ − iεij

lB
2

8
εkmεln

{
(∂k∂lb)

b2
− 3

2

(∂kb)(∂lb)

b3
, {5(0)

m , 5(0)
n }

}
+ o(lB

3)

[5(0)
i , X

j

(1)] = ilB
2εjk

(
1

2

{
(∂ib)

b2
, 5

(0)
k

}
− 1

4

{
(∂kb)

b2
, 5

(0)
i

})
[Xi

(1), X
j

(1)] = −ilB
2εij b−1 + o(lB

3). (12)

All the functions have to be evaluated inX(1). We observe that theXi
(1)s are no longer

commuting variables so that the evaluation of the magnetic field functionb and of its
derivatives inX(1) involves ordering ambiguities. With the commutator of theXi

(1) being
of order lB2, these ambiguities concern the termso(lB

3).
The operators5(1)

i s are constructed by adding a correction of orderlB to the 5
(0)
i s.

This correction is looked for as a homogeneous second-order polynomial in the5
(0)
i s. A

brief computation indicates that the right choice is

5
(1)
i = 5

(0)
i − lB

24
εkm

{
(∂kb)

b3/2
, {5(0)

i , 5(0)
m }

}
(13)

where the functions are evaluated inX(1). The commutation relations fulfilled by the set
of operators{5(1)

i , Xi
(1); i = 1, 2} can be immediately obtained by means of (12):

[5(1)
i , 5

(1)
j ] = iεij − iεij

lB
2

4
εkmεln

{
1

2

(∂k∂lb)

b2
− 5

9

(∂kb)(∂lb)

b3
, {5(1)

m , 5(1)
n }

}
+ o(lB

3)

[5(1)
i , X

j

(1)] = ilB
2εjk

(
1

2

{
(∂ib)

b2
, 5

(1)
k

}
− 1

4

{
(∂kb)

b2
, 5

(1)
i

})
[Xi

(1), X
j

(1)] = −ilB
2εij b−1 + o(lB

3). (14)

The 5
(1)
i s behave as conjugate variables up to terms of orderlB

2 and the commutators
between the5(1)

i s and theXi
(1)s vanish again up to second-order terms inlB .
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3.3. Second-order variables

The second- and higher-order variables have to be constructed along the same lines as the
previous ones. Looking for thelB2 correction to be added to theXi

(1)s as a homogeneous

second-order polynomial in the5(1)
i s, we easily find

Xi
(2) = Xi

(1) − lB
2

8
εikεjl

{
(∂jb)

b2
,
{
5

(1)
k , 5

(1)
l

}}
(15)

the functions being evaluated inX(1). Relations (14) allow us to compute the commutation
relations

[5(1)
i , 5

(1)
j ] = iεij − iεij

lB
2

4
εkmεln

{
1

2

(∂k∂lb)

b2
− 5

9

(∂kb)(∂lb)

b3
, {5(1)

m , 5(1)
n }

}
+ o(lB

3)

[5(1)
i , X

j

(2)] = 0 + o(lB
3)

[Xi
(2), X

j

(2)] = −ilB
2εij b−1 + o(lB

3) (16)

where every function is now evaluated inX(2). Finally we proceed by constructing5(2)
i

by adding an adequate homogeneous third-order polynomial in the5
(1)
i s to 5

(1)
i ,

5
(2)
i = 5

(1)
i + lB

2

4
εkmεln

{
1

2

(∂k∂lb)

b2
− 5

9

(∂kb)(∂lb)

b3
, 5(1)

m 5
(1)
i 5(1)

n

}
(17)

the functionb and its derivatives again being evaluated inX(2). The set of operators
{5(2)

i , Xi
(2); i = 1, 2} fulfils the desired commutation relations

[5(2)
i , 5

(2)
j ] = iεij + o(lB

3) [5(2)
i , X

j

(2)] = 0 + o(lB
3)

[Xi
(2), X

j

(2)] = −ilB
2εij b−1 + o(lB

3). (18)

The5
(2)
i s are conjugate up to terms of orderlB

3 and commutate with theXi
(2)s again up to

third order inlB . In the limit of a constant magnetic field, of course, all the variables that
we have introduced have the correct behaviour.

3.4. A non-canonical set of variables

In principle we may think to repeat this procedure an arbitrary number of times and to
construct, as power series inlB with coefficients polynomial in theπis and depending
on the xis through the functionb and its derivatives, a set of non-canonical operators
{5i, X

i; i = 1, 2} fulfilling the commutation relations

[5i, 5j ] = iεij [5i, X
j ] = 0 [Xi, Xj ] = −ilB

2εij b−1 (19)

b−1 now being evaluated inX. However, in order to discuss the problem to second order in
the adiabatic parameterlB , we only need to know the first three terms of these series, which
are terms which we have already evaluated. Up to terms of orderlB

3 we may therefore
confuse the5(2)

i s andXi
(2)s with the5is andXis, respectively.

Let us observe now, that aside from the functionb−1 appearing on the right-hand
side of the third identity, the commutation relations (19) correspond to (6). Although
the Xis are not conjugate variables they commute with the5is and their commutator
is a function of theXis alone. The Hilbert space of the system separates therefore
under the action of the two pairs of operators in the direct sum of the two subspaces,
each one describing a degree of freedom of the system. The scale dependence of the
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commutation relations (19) indicates again that in the limit of very strong magnetic fields
(small lB) the 5is and theXis describe afast and a slow degree of freedom of the
system, respectively. Theadiabatic kinematical momenta5i and theadiabatic guiding
centre operatorsXi , introduced in this section, appear therefore as a suitable choice of
variables for our problem.

4. The adiabatic expansion

The next step is to rewrite Hamiltonian (7) in terms of the new set of variables. For this
purpose we have first to invert the power series expressing the5is and theXis in terms of
theπis and thexis and then to replace these expressions in (7). As a result the Hamiltonian
will appear as a power series in the magnetic lengthlB :

H = H(0) + lBH(1) + lB
2H(2) + · · · . (20)

In the limit of the slowly-varying magnetic field, that is when the magnetic length may be
considered small with respect to the length scale over which the magnetic field varies, this
equation may be interpreted as a perturbative expansion of the Hamiltonian and used to
obtain approximate expressions of the spectrum and the wavefunctions of the system. We
call it the adiabatic expansionof the Hamiltonian.

The task of obtaining the operatorsπi andxi in terms of the new variables5i andXi

is not a hard one. Recalling thatXi = Xi
(2) + o(lB

3) and using equations (9), (11), (13)
and (15) we can immediately obtain the first three terms of the power series expressing the
xis in terms of theπis and theXis, xi = xi(π, X). This allows us to rewrite the5(0)

i s as
functions of the theπis and theXis, so that by using equations (13), (17) and the relation
5i = 5

(2)
i +o(lB

3), it is possible to rewrite the5is as a power series inlB with coefficients
depending on theπis and theXis, 5i = 5i(π, X). Inverting these series order by order
we can finally calculate theπis as functions of the5is and theXis. By substituting these
expressions inxi = xi(π, X), we also get thexis as functions of the5is and theXis. A
few computations lead to the result

πi = b1/25i − lB

6

(∂kb)

b
εkm{5i, 5m} + lB

2

(
1

8

(∂k∂lb)

b3/2
− 7

72

(∂kb)(∂lb)

b5/2

)
εkmεln5m5i5n

+o(lB
3) (21)

xi = Xi − lBεikb−1/25k − lB
2

12
εikεjl (∂j b)

b2
{5k, 5l} + o(lB

3) (22)

the functionb and its derivatives being evaluated inX. As a check we can easily reobtain
the commutation relations (8) by means of expressions (21), (22) and (19).

The first three terms of the adiabatic expansion of the Hamiltonian can now be
immediately obtained by substituting expressions (21) and (22) in (7). In order to
simplify the notation we introduce the operatorsJ = 1

2δij5i5j , Jk = 1
2δij5i5k5j and

Jkl = 1
2δij5i{5k, 5l}5j . J is just the Hamiltonian of an harmonic oscillator in the

conjugate variables51, 52 and, as we will see in the next section, plays a central role
in our discussion. A brief computation yields

H(0)/h̄ωB = b(J + gσ3) (23)

H(1)/h̄ωB = − (∂ib)

b1/2
εik(2Jk/3 + gσ35k) (24)
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H(2)/h̄ωB =
(

1

8

(∂i∂j b)

b
− 3

72

(∂ib)(∂jb)

b2

)
εikεjl(Jkl + 2gσ3{5k, 5l})

−
(

1

16

(∂i∂j b)

b
− 5

144

(∂ib)(∂jb)

b2

)
δij (25)

.
....

These equations represent a good starting point for a perturbative analysis of the system.
Nevertheless there is still some more work that may be done in order to make this task
simpler. In the next section we will follow a strategy which very much recalls the one used
in the perturbation theory of Hamiltonian mechanics, in order to find a unitary transformation
makingH depend on51 and52 only by means of their combinationJ and its powers.J is
then an adiabatic invariant which may be identified with themagnetic moment of gyration
of the particle.

5. Effective guiding centre dynamics

A well known strategy in treating perturbative problems in classical mechanics is that of
subjecting the system to a series of near-identity canonical transformations in order to
make the various orders of the perturbative expansion of the Hamiltonian be independent
of certain variables. In this way it is possible to identify the constants of motion of the
system up to an arbitrary order in the perturbative parameter. The approximate solution of
the problem turns out to be notably simplified. In this section we will adopt the equivalent
technique in quantum mechanics. Hamiltonian (20) will be subjected to a near-identity
unitary transformation such that the following criterion is fulfilled:the new Hamiltonian
should depend on the conjugate variables51 and52 only by means of the operatorJ and
its powers. In this wayJ is a constant of motion of the system and the dynamics of the
Xis separates from that of the5is.

Let us therefore consider a near-identity unitary operatorU , represented in the form
U = eiL. The Hermitian operatorL will differ from the identity operator1 by terms of
order greater thanlB so that it may be represented as the power series

L = 1 + lBL(1) + lB
2L(2) + · · · . (26)

Subjecting Hamiltonian (20) to this transformation produces the result

eiLHe−iL = H(0) + lB(H(1) + i[L(1), H(0)])

+lB
2

(
H(2) + i[L(2), H(0)] + i

[
L(1), H(1) + i

2
[L(1), H(0)]

])
+ · · · . (27)

The zero-order term of the Hamiltonian remains unchanged whereas the others are corrected
by additive terms depending on the commutators of theL(n)s with H(0) and the subsequent
terms of the adiabatic expansion. We start therefore by looking for an operatorL(1) such
that its commutator withH(0), [L(1), H(0)], might correct the first-order term of the adiabatic
expansion in the desired way. A brief computation indicates that it is possible to annihilate
the first-order term of the transformed Hamiltonian by choosing

L(1) = − (∂ib)

b3/2
δik(2Jk/3 + gσ35k). (28)

The next step is to construct the operatorL(2) making the second-order term of the adiabatic
expansion,H(2) + i[L(2), H(0)] + i[L(1), H(1)]/2, depend on51, 52 only by means of their
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combinationJ and its powers. The correct choice results in

L(2) = 1

16

(
(∂i∂j b)

b2
− 1

3

(∂ib)(∂jb)

b3

)
εikδjl(Jkl + 2gσ3{5k, 5l}). (29)

Having obtained further terms of the adiabatic expansion (20) it would be possible to
continue with this procedure to arbitrary order. At least in principle therefore it is possible
to makeJ into a constant of motion to an arbitrary order in the adiabatic parameterlB .
Our analysis stops at second order. Subjecting Hamiltonian (20), withH(0), H(1) andH(2)

given by (23), (24) and (25), respectively, to the unitary transformation already described
we get the new adiabatic expansion

H′/h̄ωB = b(J + gσ3) + lB
2

4

[Mb

b
− 3

|∇b|2
b2

]
(J 2 + 2gσ3J )

+ lB
2

16

[Mb

b
− (1 + 8g2)

|∇b|2
b2

]
+ o(lB

3) (30)

where the functionsb, Mb = δij (∂i∂j b) and |∇b|2 = δij (∂ib)(∂jb) are again evaluated in
X. Up to terms of orderlB3 the operatorJ is a constant of motion of the system and
the harmonic oscillator degree of freedom described by51 and52 separates from the the
guiding centre motion described byX1 andX2. In the semiclassical picture the fast rotation
of the particle around the guiding centre corresponds to the phase space motion in the plane
51–52 whereas the slow drift of the guiding centre in the plane corresponds to the phase
space motion in the planeX1–X2. The adiabatic invariantJ may therefore be identified
with the magnetic moment of gyrationof the particle, that is the magnetic moment of the
current loop described by the particle in one cyclotron gyration. In the classical limit the
Hamiltonian operator (30) reproduces correctly Littlejohn’s guiding centre Hamiltonian [4].

Once the system has been frozen in one of its gyrating eigenstates, that is, in an eigenstate
of the fast degree of freedom, Hamiltonian (30) describes the corresponding effective
guiding centre dynamics. It is interesting to observe that the zero-order effective guiding
centre Hamiltonian corresponds to the magnetic field functionb(x) in which the coordinates
x1 andx2 have been substituted by the non-commuting operatorsX1 andX2. Introducing
a pair of Euler potentials x1(x) and x2(x) for the magnetic fieldb(x)ẑ, ∇x1 ∧ ∇x2 = b

[11], it is also possible to make theXis into a couple of conjugate operators. Defining
X1 = x1(X) and X2 = x2(X) we get in fact [X1, X2] = −ilB2 [2, 4]. In order to evaluate
the zero-order spectrum of the system it is therefore sufficient to construct the Hamiltonian
operator of the system by substituting the commuting variables x1 and x2 with the couple of
conjugate operators X1 and X2 in the functionb(x(x1, x2)). This is similar to a quantization
procedure, which for some aspects, reminds us of the one explored by Klauder and Onofri
[12, 13].

Further corrections to the spectrum may be evaluated by means of standard perturbation
theory and the subsequent terms of the adiabatic expansion (30).

To conclude this section we specialize to the case of electrons,g = −1/2, in order to
check that our results are consistent with a theorem of Aharonov and Casher [9] stating,
among other things, that the ground state of an electron moving in an arbitrary two-
dimensional magnetic field always has zero energy. By setting the gyromagnetic factor
to −1/2 our Hamiltonian reduces to the quite compact form

H′/h̄ωB = b(J − 1
2σ3) + lB

2

4

[4b

b
− 3

|∇b|2
b2

]
(J 2 − σ3J + 1

4) + o(lB
3). (31)
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Recalling that the eigenvalues ofJ are En = (n + 1
2), n = 0, 1, 2, . . ., and that ofσ3 are

s = ±1 it can immediately be observed that the ground-state energy of Hamiltonian (31),
(n = 0, s = 1), is zero up to terms of orderlB3.

6. Discussion and conclusion

The construction of a set of non-canonical operators sharing the main properties of
the kinematical momenta and the guiding centre operators of a particle moving in a
homogeneous magnetic field allows us to separate the unperturbed dynamics of a quantum
particle moving in a two-dimensional weakly-inhomogeneous magnetic field from the
perturbation, making the guiding centre dynamics non-trivial. The effective guiding
centre Hamiltonian can be written furthermore as a power series in the magnetic length
lB . The main features of the construction are that it is perturbative in nature, that is,
it is performed order by order in the adiabatic parameterlB , and involves only simple
algebraic manipulations. These properties allow us to achieve our goal in a very simple and
economical way.

It is worthwhile saying something about the efficiency of the adiabatic expansion (30).
As we said in the introduction, the presence of a magnetic field in a quantum context
introduces the length scalelB . Intuitively, we may therefore consider a magnetic field to be
slowly varying (weakly inhomogeneous), when its variation ratio over the magnetic length
scale lB is a small number. The adiabatic expansion obtained in this paper completely
confirms this picture. Furthermore, for a rather weak magnetic field of 1 G, the magnetic
length is still very small,lB ' 10−4 cm. To have an idea of some number, we recall that
the geomagnetic field near to the surface of the earth is of the order of a gauss as well as
the magnetic field produced by a wire in which flows a current of a few amperes. In the
physics of the quantum Hall effect much stronger fields are used, typically of the order of
104–105 G. All these fields vary significantly over lengths which go from millimetres to
several metres. That is to say, the adiabatic approximation is avery good one. Among
other things, therefore, our work gives a further explanation of why such sharp Landau
levels are observed in the quantum Hall effect.

Once the system has been frozen in one of its gyrating eigenstates, the dynamics of the
remaining degree of freedom is described by means of a Hamiltonian operator which has to
be constructed by quantizing the classical Hamiltonianb(x(x1, x2)) (replacingh̄ with lB

2).
The lB

2 terms of the adiabatic expansion (30) will in general contribute a small correction
to the spectrum of the system. By an appropriate choice of the magnetic field, therefore, an
arbitrary one-degree-of-freedom Hamiltonian may be reproduced. It would be interesting
to explore the possibility of concretely realizing devices of this kind.

We conclude by observing that the method we developed in this paper works in the full
three-dimensional case as well as in the two-dimensional one. The study of the adiabatic
motion of a charged, spinning, quantum particle in a three-dimensional magnetic field will
be reported upon in a forthcoming publication.
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